欧美一级淫片,亚洲一区资源,外国成人直播,在线精品国产亚洲

奧數網
全國站
您現在的位置:奧數 > 淄博奧數 > 淄博小升初 > 正文

小升初奧數必須掌握的30個知識(二)(3)

來源:家長幫論壇淄博站 文章作者:跳跳2000 2018-03-11 15:12:06

智能內容

  ③逐次去掉最后一位數字并減去末位數字后能被11整除。

  7. 能被13整除:

  ①末三位上數字所組成的數與末三位以前的數字所組成的數之差能被13整除。

  ②逐次去掉最后一位數字并減去末位數字的9倍后能被13整除。

  三、整除的性質:

  1. 如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。

  2. 如果a能被b整除,c是整數,那么a乘以c也能被b整除。

  3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。

  4. 如果a能被b、c整除,那么a也能被b和c的最小公倍數整除。

  18.余數及其應用

  基本概念:對任意自然數a、b、q、r,如果使得a÷b=q……r,且0<r<b,那么r叫做a除以b的余數,q叫做a除以b的不完全商。

  余數的性質:

  ①余數小于除數。

  ②若a、b除以c的余數相同,則c|a-b或c|b-a。

  ③a與b的和除以c的余數等于a除以c的余數加上b除以c的余數的和除以c的余數。

  ④a與b的積除以c的余數等于a除以c的余數與b除以c的余數的積除以c的余數。

  19.余數、同余與周期

  一、同余的定義:

  ①若兩個整數a、b除以m的余數相同,則稱a、b對于模m同余。

  ②已知三個整數a、b、m,如果m|a-b,就稱a、b對于模m同余,記作a≡b(mod m),讀作a同余于b模m。

  二、同余的性質:

  ①自身性:a≡a(mod m);

  ②對稱性:若a≡b(mod m),則b≡a(mod m);

  ③傳遞性:若a≡b(mod m),b≡c(mod m),則a≡ c(mod m);

  ④和差性:若a≡b(mod m),c≡d(mod m),則a+c≡b+d(mod m),a-c≡b-d(mod m);

  ⑤相乘性:若a≡ b(mod m),c≡d(mod m),則a×c≡ b×d(mod m);

  ⑥乘方性:若a≡b(mod m),則an≡bn(mod m);

  ⑦同倍性:若a≡ b(mod m),整數c,則a×c≡ b×c(mod m×c);

  三、關于乘方的預備知識:

  ①若A=a×b,則MA=Ma×b=(Ma)b

  ②若B=c+d則MB=Mc+d=Mc×Md

  四、被3、9、11除后的余數特征:

  ①一個自然數M,n表示M的各個數位上數字的和,則M≡n(mod 9)或(mod 3);

  ②一個自然數M,X表示M的各個奇數位上數字的和,Y表示M的各個偶數數位上數字的和,則M≡Y-X或M≡11-(X-Y)(mod 11);

  五、費爾馬小定理:如果p是質數(素數),a是自然數,且a不能被p整除,則ap-1≡1(mod p)。

  20.分數與百分數的應用

  基本概念與性質:

  分數:把單位"1"平均分成幾份,表示這樣的一份或幾份的數。

  分數的性質:分數的分子和分母同時乘以或除以相同的數(0除外),分數的大小不變。

  分數單位:把單位"1"平均分成幾份,表示這樣一份的數。

  百分數:表示一個數是另一個數百分之幾的數。

  常用方法:

  ①逆向思維方法:從題目提供條件的反方向(或結果)進行思考。

  ②對應思維方法:找出題目中具體的量與它所占的率的直接對應關系。

  ③轉化思維方法:把一類應用題轉化成另一類應用題進行解答。最常見的是轉換成比例和轉換成倍數關系;把不同的標準(在分數中一般指的是一倍量)下的分率轉化成同一條件下的分率。常見的處理方法是確定不同的標準為一倍量。

  ④假設思維方法:為了解題的方便,可以把題目中不相等的量假設成相等或者假設某種情況成立,計算出相應的結果,然后再進行調整,求出最后結果。

  ⑤量不變思維方法:在變化的各個量當中,總有一個量是不變的,不論其他量如何變化,而這個量是始終固定不變的。有以下三種情況:A、分量發生變化,總量不變。B、總量發生變化,但其中有的分量不變。C、總量和分量都發生變化,但分量之間的差量不變化。

  ⑥替換思維方法:用一種量代替另一種量,從而使數量關系單一化、量率關系明朗化。

  ⑦同倍率法:總量和分量之間按照同分率變化的規律進行處理。

  ⑧濃度配比法:一般應用于總量和分量都發生變化的狀況。

廣告合作請加微信:17310823356

京ICP備09042963號-15 京公網安備:11010802027854

違法和不良信息舉報電話:010-56762110 舉報郵箱:wzjubao@tal.com

奧數版權所有Copyright2005-2021 www.buaa3.com. All Rights Reserved.

主站蜘蛛池模板: 海口市| 岗巴县| 四川省| 家居| 韩城市| 南川市| 筠连县| 丰都县| 宣恩县| 滦南县| 张家界市| 建平县| 安泽县| 辉县市| 灵璧县| 旬阳县| 鄂尔多斯市| 岢岚县| 柳林县| 鹤岗市| 门头沟区| 南漳县| 营山县| 紫阳县| 丹凤县| 页游| 宕昌县| 陆良县| 宁陵县| 前郭尔| 同仁县| 双牌县| 天全县| 迁西县| 廊坊市| 扶沟县| 牡丹江市| 南平市| 商丘市| 虞城县| 南阳市|