小學趣味數學:電影院排隊(2)
來源:網絡資源 文章作者:奧數網整理 2019-05-28 20:55:13
【答案】
本題可用遞歸算法,但時間復雜度為2的n次方,也可以用動態規劃法,時間復雜度為n的平方,實現起來相對要簡單得多,但最方便的就是直接運用公式:排隊的種數=(2n)!/[n!(n1)!]。
如果不考慮電影院能否找錢,那么一共有(2n)!/[n!n!]種排隊方法(即從2n個人中取出n個人的組合數),對于每一種排隊方法,如果他會導致電影院無法找錢,則稱為不合格的,這種的排隊方法有(2n)!/[(n-1)!(n1)!](從2n個人中取出n-1個人的組合數)種,所以合格的排隊種數就是(2n)!/[n!n!]-(2n)!/[(n-1)!(n1)!]=(2n)!/[n!(n1)!]。至于為什么不合格數是(2n)!/[(n-1)!(n1)!],說起來太復雜,這里就不講了。
相關文章
- 小學1-6年級作文素材大全
- 全國小學升初中語數英三科試題匯總
- 小學1-6年級數學天天練
- 小學1-6年級奧數類型例題講解整理匯總
- 小學1-6年級奧數練習題整理匯總
- 小學1-6年級奧數知識點匯總
- 小學1-6年級語數英教案匯總
- 小學語數英試題資料大全
- 小學1-6年級語數英期末試題整理匯總
- 小學1-6年級語數英期中試題整理匯總
- 小學1-6年語數英單元試題整理匯總
點擊查看更多




