21.分數大小的比較
基本方法:
、偻ǚ址肿臃ǎ菏顾蟹謹档姆肿酉嗤,根據同分子分數大小和分母的關系比較。
、谕ǚ址帜阜ǎ菏顾蟹謹档姆帜赶嗤,根據同分母分數大小和分子的關系比較。
③基準數法:確定一個標準,使所有的分數都和它進行比較。
、芊肿雍头帜复笮”容^法:當分子和分母的差一定時,分子或分母越大的分數值越大。
⑤倍率比較法:當比較兩個分子或分母同時變化時分數的大小,除了運用以上方法外,可以用同倍率的變化關系比較分數的大小。(具體運用見同倍率變化規(guī)律)
⑥轉化比較方法:把所有分數轉化成小數(求出分數的值)后進行比較。
⑦倍數比較法:用一個數除以另一個數,結果得數和1進行比較。
、啻笮”容^法:用一個分數減去另一個分數,得出的數和0比較。
、岬箶当容^法:利用倒數比較大小,然后確定原數的大小。
⑩基準數比較法:確定一個基準數,每一個數與基準數比較。
22.分數拆分
一、 將一個分數單位分解成兩個分數之和的公式:
① =+;
、=+(d為自然數);
23.完全平方數
完全平方數特征:
1. 末位數字只能是:0、1、4、5、6、9;反之不成立。
2. 除以3余0或余1;反之不成立。
3. 除以4余0或余1;反之不成立。
4. 約數個數為奇數;反之成立。
5. 奇數的平方的十位數字為偶數;反之不成立。
6. 奇數平方個位數字是奇數;偶數平方個位數字是偶數。
7. 兩個相臨整數的平方之間不可能再有平方數。
平方差公式:X2-Y2=(X-Y)(X+Y)
完全平方和公式:(X+Y)2=X2+2XY+Y2
完全平方差公式:(X-Y)2=X2-2XY+Y2
24.比和比例
比:兩個數相除又叫兩個數的比。比號前面的數叫比的前項,比號后面的數叫比的后項。
比值:比的前項除以后項的商,叫做比值。
比的性質:比的前項和后項同時乘以或除以相同的數(零除外),比值不變。
比例:表示兩個比相等的式子叫做比例。a:b=c:d或
比例的性質:兩個外項積等于兩個內項積(交叉相乘),ad=bc。
正比例:若A擴大或縮小幾倍,B也擴大或縮小幾倍(AB的商不變時),則A與B成正比。
反比例:若A擴大或縮小幾倍,B也縮小或擴大幾倍(AB的積不變時),則A與B成反比。
比例尺:圖上距離與實際距離的比叫做比例尺。
按比例分配:把幾個數按一定比例分成幾份,叫按比例分配。
25.綜合行程
基本概念:行程問題是研究物體運動的,它研究的是物體速度、時間、路程三者之間的關系.
基本公式:路程=速度×時間;路程÷時間=速度;路程÷速度=時間
關鍵問題:確定運動過程中的位置和方向。
相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)
追及問題:追及時間=路程差÷速度差(寫出其他公式)
流水問題:順水行程=(船速+水速)×順水時間
逆水行程=(船速-水速)×逆水時間
順水速度=船速+水速
逆水速度=船速-水速
靜水速度=(順水速度+逆水速度)÷2
水 速=(順水速度-逆水速度)÷2
流水問題:關鍵是確定物體所運動的速度,參照以上公式。
過橋問題:關鍵是確定物體所運動的路程,參照以上公式。
主要方法:畫線段圖法
基本題型:已知路程(相遇路程、追及路程)、時間(相遇時間、追及時間)、速度(速度和、速度差)中任意兩個量,求第三個量。