“千年難題”之二:霍奇(Hodge)猜想
二十世紀(jì)的數(shù)學(xué)家們發(fā)現(xiàn)了研究復(fù)雜對象的形狀的強(qiáng)有力的辦法;鞠敕ㄊ菃栐谠鯓拥某潭壬希覀兛梢园呀o定對象的形狀通過把維數(shù)不斷增加的簡單幾何營造塊粘合在一起來形成。這種技巧是變得如此有用,使得它可以用許多不同的方式來推廣;最終導(dǎo)致一些強(qiáng)有力的工具,使數(shù)學(xué)家在對他們研究中所遇到的形形色色的對象進(jìn)行分類時(shí)取得巨大的進(jìn)展。不幸的是,在這一推廣中,程序的幾何出發(fā)點(diǎn)變得模糊起來。在某種意義下,必須加上某些沒有任何幾何解釋的部件;羝娌孪霐嘌,對于所謂射影代數(shù)簇這種特別完美的空間類型來說,稱作霍奇閉鏈的部件實(shí)際上是稱作代數(shù)閉鏈的幾何部件的(有理線性)組合。



